The isolable matryoshka nesting doll icosahedral cluster $[As@Ni_{12}@As_{20}]^{3-}$ as a "superatom": analogy with the jellium cluster Al_{13}^{-} generated in the gas phase by laser vaporization[†]

R. Bruce King^{*a} and Jijun Zhao^{*b}

Received (in Berkeley, CA, USA) 2nd June 2006, Accepted 11th August 2006 First published as an Advance Article on the web 1st September 2006 DOI: 10.1039/b607895h

The valence electrons in the recently reported icosahedral cluster $[As@Ni_{12}@As_{20}]^{3-}$ with a Russian matryoshka nesting doll structure can be partitioned so that the central As atom has the rare gas configuration, as As^{3-} , and the intermediate Ni_{12} icosahedron receives 40 electrons from the lone pairs of the outer As_{20} dodecahedron to be isoelectronic with the Al_{13}^{-} jellium cluster found in molecular beam experiments.

One of the exciting recent developments of metal cluster chemistry has been the recognition of certain bare spherical free-electron metal clusters as "superatoms" having discrete electronic energy levels based on the so-called jellium model.¹ However, whereas in an atom the positive charge of a nucleus is concentrated at a central point, in a cluster the positive charge can be assumed to be distributed over a positive ion core of the size of the cluster. This difference is important since it leads to different closed shell electronic configurations in atoms and in jellium clusters.¹ Thus the closed shell atomic electron configurations occur at 2, 10, 18, 36, 54, and 86 electrons, corresponding to the atomic numbers of the noble gases. However, in a jellium cluster, the closed shell stable electronic configurations occur at 2, 8, 20, 40, 70, 112, and 168 electrons.¹

Spherical jellium metal clusters have been generated in the gas phase by laser vaporization and characterized by mass spectroscopy. One of the most interesting of such clusters is Al_{13}^- , which has the jellium closed shell configuration of 40 electrons for $L \leq 3$, namely 39 electrons from the 13 aluminium atoms ($39 = 3 \times 13$) and the 40th electron from the negative charge.² Thus $Al_{13}^$ functions like a "superhalide" ion. Furthermore, the isoelectronic neutral species³ CAl₁₂ functions as a "supernoble gas". The closed shell of CAl₁₂ is indicated by a gap of approximately 1.9 eV.⁴

An interesting question is whether such jellium spherical electronic behavior can be found in a stable metal cluster isolable in the condensed phase. An interesting candidate is the recently discovered⁵ $[As@Ni_{12}@As_{20}]^{3-}$ cluster, isolated as its *n*-Bu₄P⁺ salt and structurally characterized by X-ray diffraction. This cluster

E-mail: rbking@chem.uga.edu

has full icosahedral symmetry (I_h) and a layer structure analogous to a Russian matryoshka nesting doll (Fig. 1).

The outer layer of $[As@Ni_{12}@As_{20}]^{3-}$ (purple in Fig. 1) consists of a regular As_{20} dodecahedron. Removing this outer As_{20} dodecahedron next gives a Ni_{12} icosahedron (blue in Fig. 1). Removal of this Ni_{12} icosahedron leaves behind only a single central arsenic atom. The available electrons in this cluster can be allocated among the layers to give each layer a closed shell electronic configuration.

Consider first the central arsenic atom. Applying the -3 overall charge of the ion to this central arsenic atom gives the As³⁻ anion, which has the stable electronic configuration of the next noble gas, namely krypton. Next, consider the outer As₂₀ dodecahedral shell, which has a total of $20 \times 5 = 100$ valence electrons. These 100 electrons are partitioned into the 60 electrons required for two-center two-electron (2c–2e) bonds along each of the 30 edges of the regular dodecahedron and the 40 electrons required for a lone pair on each of the 20 arsenic atoms. Extended Hückel calculations, by the discoverers of the [As@Ni₁₂@As₂₀]³⁻ cluster,⁵ indicate negligible interactions between the molecular orbitals defining the As–As bonds in the outer As₂₀ dodecahedron and the molecular orbitals in the inner As@Ni₁₂ fragment.

Finally, consider the intermediate Ni_{12} icosahedron layer. Bare nickel atoms in clusters are zero electron donors since they have filled d^{10} shells and in that sense function as pseudonoble gases.⁶ However, the Ni_{12} icosahedron is well positioned to receive the

Fig. 1 Equilibrium structure of the $[As@Ni_{12}@As_{20}]^{3-}$ ion with I_h symmetry. The outer As_{20} dodecahedron and the central As atom are shown in purple whereas the intermediate Ni_{12} icosahedron is shown in blue. For clarity the connections between the Ni and outer As atoms are not indicated.

^aDepartment of Chemistry and Center for Computational Chemistry, University of Georgia, Athens, Georgia, USA.

^bState Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams & College of Advanced Science and Technology, Dalian University of Technology, Dalian, China. E-mail: zhaojj@dlut.edu.cn † Electronic supplementary information (ESI) available: Computed molecular orbital energies and irreducible representations of the outer As₂₀ dodecahedron and the complete [As@Ni₁₂@As₂₀]³⁻ cluster. See DOI: 10.1039/b607895h

40 electrons from the 20 lone pairs of the arsenic atoms in the outer As₂₀ dodecahedron because of the dual relationship between the As₂₀ dodecahedral and Ni₁₂ icosahedral layers in the matryoshka nesting doll structure. Thus the overlap between these lavers generates 20 tetrahedral AsNi₃ cavities, each of which can be the location of a 4c-2e bond. The ability of external lone pairs to function in skeletal bonding is clearly indicated in certain hypoelectronic bare clusters of the Group 13 metals,⁷ notably the eleven vertex clusters E_{11}^{7-} (E = Ga, In, Tl) found in intermetallics with alkali metals.8 Furthermore, the extended Hückel calculations of Eichhorn and co-workers⁵ indicate that the 20 lone pairs on the outer As₂₀ dodecahedron interact with the corresponding 20 virtual Ni₁₂(µ₁₂-As)³⁻ molecular orbitals (MOs) of the same symmetry $(a_g + t_{1u} + t_{2u} + g_u + g_g + h_g)$ to give 20 bonding MOs. This is in accord with a previous⁹ density functional theory (DFT) calculation on $[As@Ni_{12}@As_{20}]^{3-}$, which indicates that the binding energy between the inner $[As@Ni_{12}]^{3-}$ unit and the outer As₂₀ dodecahedron is substantial, *i.e.*, about 28.2 eV.

In this chemical bonding model for $[As@Ni_{12}@As_{20}]^{3-}$, the outer As_{20} dodecahedron is seen to use its 20 "lone" electron pairs to function as an "icosadentate" ligand to the next layer, namely the Ni_{12} icosahedron. In this way the Ni_{12} icosahedron attains the stable 40 electron jellium configuration. This is also related to the structure of the known Al_{13}^{-} cluster, which is also assumed to be a centered icosahedron, although no real structural proof is yet available for this and other experimentally obtained similar gas phase species.

The matryoshka nesting doll structure of $[As@Ni_{12}@As_{20}]^{3-}$ is seen to protect components that are not stable in the free state. Thus the As@Ni_{12} "stuffing" of the outer As_{20} dodecahedron prevents the dodecahedron from collapsing into more stable smaller polyhedra such as As_4, which is stabilized by spherical aromaticity.¹⁰ Furthermore, the As_{20} outer layer stabilizes the Ni_{12} icosahedron by filling the external Ni_{12} orbitals with the As_{20} lone pairs. Finally, the central As^3- unit has too high a charge density to be stable in the isolated state.

Other models for the chemical bonding in $[As@Ni_1@As_{20}]^{3-}$ were all found to have flaws. In all cases the 60 electrons required for the 30 2c–2e edge bonds in the outer As_{20} dodecahedron were isolated from the remaining 168 of the 228 total valence electrons in the structure in accord with the original extended Hückel calculations.⁵ However, the Wade–Mingos rules¹¹ require 170 cluster valence electrons for an icosahedral Ni₁₂(μ_{12} -As) cluster, namely 120 for the 12 filled nickel d¹⁰ shells, 24 for the 12 external nickel orbitals, and 26 for the skeletal icosahedral bonding (2n + 2 = 26 for n = 12 by the Wade–Mingos rules). Eichhorn and co-workers⁵ account for this discrepancy by a frontier orbital energy inversion where the HOMO is a four-fold degenerate g_g MO and the LUMO is a five-fold degenerate h_g MO rather than *vice versa*. Our density functional calculations agree with them in this connection.

It is also of interest that a configuration of 168 electrons is the stable jellium sphere electronic configuration for $L \leq 6.^{1}$ However,

the irreducible representations of the bonding molecular orbitals in the outer As_{20} dodecahedron and the complete $[As@Ni_{12}@As_{20}]^{3-}$ matryoshka nesting doll (see supporting information[†]) do not agree with the required breakdown of the 114 bonding orbitals for the 228 total valence electrons. In particular, our molecular orbital calculations using density functional theory (see supporting information[†]) gave four bonding non-degenerate totally symmetric a_g molecular orbitals whereas a combination of the 30 2c–2e edge bonds in the outer As_{20} dodecahedron and the components of the 84 levels for the 168 jellium sphere electrons up to $L \leq 6$ require six a_g orbitals.

The analysis of the chemical bonding in [As@Ni12@As20]³⁻ outlined in this communication suggests some previously unrecognized principles governing the stability of large spherical metal clusters that go beyond the now familiar Wade-Mingos rules.¹¹ Thus, structural units that are potentially chemically reactive can be protected by embedding them into a matryoshka nesting doll structure related to the stabilization of unusual M₃N metal nitride moieties inside endohedral fullerenes.¹² Furthermore, this principle can be used to stabilize a jellium metal cluster sphere, namely a Ni12 icosahedron in [As@Ni12@As20]3-. This suggests that the Al₁₃⁻ jellium sphere, currently known only in the gas phase, might be stabilized as an isolable condensed phase molecule in a matryoshka nesting doll structure, possibly even using the As₂₀ dodecahedron found in [As@Ni12@As20]3- as an outer layer. In this connection, central Al13 units are found in the giant $[Al_{69}{N(SiMe_{3})_{2}}_{18}]^{3-}$ and $[Al_{77}{N(SiMe_{3})_{2}}_{20}]^{2-}$ clusters isolated by Schnöckel and co-workers¹³ as etherates of their lithium salts and characterized structurally by X-ray diffraction.

This work was supported at the University of Georgia by the National Science Foundation Grant CHE-029857.

Notes and references

- 1 W. A. de Heer, Rev. Mod. Phys., 1993, 65, 611.
- 2 D. E. Bergeron, A. W. Castleman, Jr, T. Morisato and S. N. Khanna, *Science*, 2004, 304, 84.
- 3 X. G. Gong and V. Kumar, Phys. Rev. Lett., 1993, 70, 2078.
- 4 S. N. Khanna and P. Jena, Phys. Rev. Lett., 1992, 69, 1664.
- 5 M. J. Moses, J. C. Fettinger and B. W. Eichhorn, *Science*, 2003, **300**, 778.
- 6 R. B. King, Dalton Trans., 2004, 3420.
- 7 R. B. King, Rev. Roum. Chim., 2002, 47, 1005.
- 8 (a) Z.-C. Dong and J. D. Corbett, J. Cluster Sci., 1995, 6, 187; (b) Z.-C. Dong and J. D. Corbett, Inorg. Chem., 1995, 34, 5042.
- 9 J. J. Zhao and R. H. Xie, Chem. Phys. Lett., 2004, 396, 161.
- 10 A. Hirsch, Z. Chen and H. Jiao, Angew. Chem., Int. Ed., 2001, 40, 2834.
- 11 (a) K. Wade, J. Chem. Soc. D, 1971, 792; (b) K. Wade, Adv. Inorg. Chem. Radiochem, 1976, 18, 1; (c) D. M. P. Mingos, Nature (London), Phys. Sci., 1972, 99, 236; (d) D. M. P. Mingos, Acc. Chem. Res., 1984, 17, 311.
- 12 (a) S. Stevenson, G. Rice, T. Glass, K. Harich, F. Cromer, M. R. Jordan, J. Craft, E. Hajdu, R. Bible, M. M. Olmstead, K. Maitra, A. J. Fischer, A. L. Balch and H. C. Dorn, *Nature*, 1999, **401**, 55; (b) J. M. Campanera, C. Bo and J. M. Poblet, *Angew. Chem., Int. Ed.*, 2005, **44**, 7230.
- 13 H. Köhnlein, A. Purath, C. Klemp, E. Baum, I. Krossing, G. Stösser and H. Schnöckel, *Inorg. Chem.*, 2001, 40, 4830.